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In solving 1-D initial value problems by implicit finite difference methods it is advantageous
to use an adaptive grid to provide local regions of high resolution and allow larger time steps
to be taken. A simple method of constructing such grids is presented and the benefits are
demonstrated by calculations of Sod’s shock tube problem (G. A. Sod, J. Comput. Phys. 27, 1
{1978}) and of a supernova explosion. ¢ 1987 Academic Press. Inc.

1. INTRODUCTION

Most astrophysical flows, even when they only involve pure gas dynamics in one
spatial dimension, are complicated to compute because many orders of magnitude
have to be covered in the time and space evolution. Of course this problem is not
confined to Astrophysics, but it is here particularly acute and has stimulated the
development of a promising method which at least partially solves the problem, the
implicit adaptive mesh technique [14, 16, 17, 18]. Here a fixed number of grid-
points is redistributed during the evolution to optimize the resolution of developing
and moving flow features. The system of physical equations is extended by adjoin-
ing an additional “grid equation” which specifies the spatial distribution of the grid-
points. The augmented system is then solved simultaneously using an implicit
method to avoid the very short time steps which the Courant-Friedrichs—Lewy
stability condition [3] would require if an explicit method were used.

This simultaneous solution of the physical equations and the grid equation
should be contrasted with methods in which the physical equations are advanced
on a fixed grid and the calculation is interrupted at regular intervals for grid rezon-
ing [5, 6]. The solution at the rezoned gridpoints has then to be constructed by
some interpolation algorithm. On the other hand methods which use an explicitly
specified transformation of the spatial coordinate system [15] may run into
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problems if the character of the solution changes from continuous to discontinuous
and in an implicit scheme require the inversion of full rather than band matrices.
An alternative solution to the problem of resolving large gradients is given in [11];
there, by applying the method of lines, a system of PDEs is converted to ODEs and
then the equations are mapped through an analytical transformation from the
physical space to the computational space. Powerful methods have been developed
in constructing multidimensional adaptive grids [2, 7] by choosing one variable to
determine the mapping from the physical into the computational mesh, but for the
astrophysical applications we have in mind we need to resolve large gradients in
many different physical quantities (e.g., density, pressure, opacity, chemical com-
position, etc.). The moving finite element methods [5, 8] look quite promising but
to our knowledge no results showing high grid refinements in the context of com-
plicated interacting shock structures have been obtained with these methods. It is
important to test numerical methods on difficult problems and we regard the
“supernova explosion” presented in the last section as a suitable touchstone for
evaluating adaptive grid methods.

The chief practical difficulty facing the method is that of formulating a satisfac-
tory grid equation. It should be capable of handling problems with multiple
variables each varying over many orders of magnitude, it should have the same
numerical character as the dynamical equations (e.g., 5 point in space and 2 point
in time), it should be capable of producing grids which are locally compressed by
factors of at least 10* when compared with uniform grids, and finally it should be
computationally efficient (e.g., vectorizable) and easy to program. Unlike the
problem of discretizing the physical equations this task is purely artificial; thus we
cannot be guided by physical arguments and must instead rely on numerical prin-
ciples and a careful analysis of what the equation should do. This leads not to a
single grid equation, but rather to a general method of constructing an equation
adapted to the specific problem being studied. While our method is certainly not
the only way of solving the problem it does appear to be simple and robust.
Although not free of adjustable parameters we have never had to “fine-tune” them
and have never produced unphysical grids.

2. CONSTRUCTION OF A GRID EQUATION

Let us consider an initial value problem for a system of partial differential
equations with two independent variables, a spatial variable x and a time variable .
We discretize the solution at N grid points, x,,..., x,, which we wish to distribute
during the evolution in such a way that the solution is uniformly resolved; where
high resolution is required, e.g., where steep gradients occur, the points should be
concentrated and where lower spatial resolution suffices the points should be spread
out. Our basic idea is to define measures of these two aspects, the point concen-
tration # (which one can think of as the attained resolution), and the desired
resolution R, and then distribute the points so that r is proportional to R, the con-
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stant of proportionality being determined by the total number of points and the
separation of the bondaries. The fundamental form of our grid equation is thus

noc R. (1)

However, because stability considerations usually require that the point concen-
tration not change too rapidly in either space or time, we make n proportional not
directly to R, but to the result of applying temporal and spatial smoothing
operators to R.

The point concentration we define to be the number of grid points per length
scale,

nj=—— (2)

where X is a natural length scale (which may be any smooth positive function of
space and time) determined by the problem. In the absence of structure in the
solution a default grid is defined by n constant. Thus if X is independent of x the
default distribution will be uniform and if X = x it will be logarithmic. More com-
plicated default grids can easily be created by choosing appropriate definitions of X.

The desired resolution, R, is a more subjective quantity whose definition
necessarily depends on the nature of the problem being solved, the numerical
method being used and the personal bias of the investigator. It is obviously essen-
tial that R be positive definite, but apart from this it can be any smooth function of
the solution and its derivatives. A simple prescription which we have found to give
very satisfactory results is motivated by the idea that in the case of one function, f,
the data points should be distributed uniformly in arc-length along the graph of f.
This suggess R=./ "1 4 (df/dx)*> which we generalize to several functions, f,,..., fi,

and discretize in the form
X f/1+l f/l 172
< P (F o)) )

j=1 ]

where F) is a natural scale associated with the function f; and f;; = f,(x,). However,
note that unlike [15] we do not transform to an “arc-length” c’oordmate. For
artificial problems where all variables are of order unity one can of course set all
scales X, F; to unity; however in physical applications they are required on dimen-
sional grounds alone.

It is perhaps worth noting that R; must be obtained by discretizing some function
R. This ensures that the only slight dependence of R; on the grid point distribution
comes from the inevitable discretization error. Clearly the required resolution is an
intrinsic property of the problem and its solution which should not depend on the
actual grid.

Our choice of spatial smoothing is based on the well-known rule of thumb, that
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for stability the grid spacing should not change from one interval to the next by
more than about 20 or 30%. We interpret this as the requirement

o ni+l a+l
< <
a+1 n

; (4)
o

7

where o is a measure of the grid “rigidity.” The simplest way to achieve this, bearing
in mind that R is positive definite, is to smooth the right-hand side of Eq. (1) and
write

o [ijl
n,ocZR,(a+1> , (5)

J

but this smoothing kernel (neglecting for the moment the question of the boundary
conditions) is the Green’s function associated with the difference operator

1 —o(a+1)6% (6)

where ¢ denotes a centred difference. Thus we can replace the smoothing on the
right by a differencing on the left and write

Ar=n;—ala+ 1)n,,,—2n,+n, )R, (7)

Actually as boundary conditions for the grid equation we set the concentration
gradient to zero,

ny=n,, Ny 2=Hy | (8)

so that the true Green’s function is slightly more complicated, but the difference is
imperceptible except near a boundary.
To smooth the time dependence we use a similar idea, in effect replacing R(r) by

f’ R(1— 'y exp(—1'/7) di'/z. 9)
[¢4]
To achieve this we write equation in the form

ﬁ,:ﬁ,.+—A—t(ﬁ,-—ﬁ§.°‘d’)xR,-, (10)
where 4t is the time step. The grid then adjusts on a time-scale t and ignores
variations on shorter time-scales. As with the other scales, t can be a constant, or
vary in some smooth fashion appropriate to the problem.

Finally we eliminate the constant of proportionality and obtain the grid
equation,

=

ﬁil i
_n ()

i

=
=

il



SIMPLE ADAPTIVE GRIDS 179

where 7 is defined by Egs. (10), (7), and (2). (We note in passing that the other two
obvious ways of writing this equation, #,R; ,=4#,_,R; and R,/d,=R,_,/h;_,, do
not appear to function as well numerically in simple tests; when the grid was
adjusting rapidly roughly twice as many time steps had to be taken, however, in
practical applications the time step is normally controlled by the physical equations
so that there should be no significant difference.) The left-hand side of the equation
is 5-point in space and 2-level in time. Without increasing the complexity R can be
any smooth function of the solution, its first three spatial derivatives and its first
time derivative.

An important aspect of this equation is that with n and R regarded as indeter-
minate quantities it is summable, i.e., the general solution of the difference equation
can be written down by reversing the steps taken above. This discrete analog of
integrability is a nontrivial property and expresses mathematically the separation
we have enforced between the problem of defining what the grid should do (the
measures of the attained and desired resolution, » and R) and the problem of
adjusting the grid to satisfy these requirements as best as possible (the choice of
temporal and spatial smoothing). Of course this property cannot be used to
facilitate the solution of the grid equation viewed as an equation for the positions of
the grid points x;; when explicit expressions for » and R are inserted it merely con-
verts one system of nonlinear equations into another much more complicated one.
Its value is rather that it allows general statements to be made about the solutions
of the grid equation. For example, if an arbitrary grid equation is used to resolve an
asymmetric structure separating two uniform states, there is no guarantee that the
asymptotic point concentrations on the left and the right will be equal or related in
any simple way. However, with our formulation their ratio will be exactly that of
the asymptotic values of R (normally one, but for some applications one might wish
to use a “pseudo-Lagrangian” grid and include in R a team proportional to the
density). In the same way it is the summability which enables us to place bounds on
the spatial and temporal variation of the grid without knowledge of the specific
form of R.

3. TEsTS

We consider first the simple problem of representing the prescribed function,
J=1[1+ tanh(10*(x — 0.4))] exp[ — ((x — 0.4)/0.2)*], (12)

on the unit interval [0, 1] (tests of this form were an invaluable aid during the
development of the grid equation). The hyperbolic tangent with a length scale of
10 * is a good model for a shock smoothed by artificial viscosity; the grid must
resolve both this very steep gradient and the smooth variation contributed by the
Gaussian term. Because the function is dimensionless and of order unity we can set
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both scale functions, F and X to one; thus to resolve the gradients we define the

required resolution as
N2\ 12
R,=<1+<{:ﬂ—é>> (13)
it TN

and the attained resolution as simply
0= ————. (14)

Starting with uniformly distributed points we integrate the grid equation forward in
time until a stationary distribution is reached. The results with 70 grid points and
various values of the parameter « are shown in Figs. 1-3.

On the simple problem the grid equation performs well and exactly as predicted.
With the least stiff grid, «=2, we achieve with 70 points a peak resolution
equivalent to that of a uniform grid with 10* points. The maximum spatial variation
of the grid is exactly that specified by the parameter « and the very asymmetric
peak in f as a function of x appears on the grid as a symmetric sawtooth in the grid
index i We note also that in the regions on the right and the left, where the
function 1s essentially zero, the asymptotic point concentrations are equal.
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FiG. 1. Distribution of 70 gridpoints for the test function given in Eq. (12} and o= 2. (a) Point con-
centration log n; as a function of grid index i. The dashed line corresponds to an equaily spaced grid. (b)
Test function in physical space. (c) Ratio n;/n,, , as a function of grid index. The horizontal lines are at

{a+1)/a and a/(a+1). (d) Test function in index space.
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If the point concentration can only vary from point to point by at most a factor
of 1+ 1/a it is clear that a local refinement of the grid by 10™ requires at least

2mIni0/In(1 + 1/2) = Sam

points (the factor of two comes from the fact that the grid spacing must decrease
both on the right and on the left when a steep gradient is resolved). The advantage
of adaptive grid methods is immediately obvious; the attainable resolution increases
exponentially as the number of points is increased. In our case m =3 so that with
o =2 a minimum of about 30 points is required, with x =3 the minimum is 45 and
with « = 5 at least 75 are needed. Indeed looking at Fig. 3 it is obvious that the grid
is starting to suffer from “point exhaustion” (e.g., the left- and right-hand point con-
centrations are no longer equal) although it is still managing to do quite a
creditable job. In this way one can make a quick and crude estimate of the
minimum number of grid points needed for any particular problem by summing the
minimum number of points required to resolve each smallscale feature.

It should be noted that of this minimum number of points most lie outside the
regions where high resolution is required and are there only to provide transition
regions in which the point concentration can increase to the value requested. An
unfortunate feature of this is that if two smallscale structures requiring similar
resolution approach each other, the transition regions between the two features
become unnecessary and the points they contain are released as the features merge.
If the structures then separate again, or new structures are created, these points
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Fic. 4. As Fig. 1 but including second derivatives as specified in Eq. (15).
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have to be pulled back in. This can be controlled to some extent by a judicious
choice of the grid time constant, but if t is made too large there will be a loss of
resolution in moving features.

If it is necessary to resolve sharp corners as well as steep gradients this is easily
achieved. Figure 4 shows the grid obtained by using the definition

with the same test function as before. The double square root is based on the idea
that if /2 is the grid spacing, then A%(d’f/dx?) should be uniform across the grid. The
spatial discretization of the physical equations will normally have an error O(h"f'")
for some small integer n; if this error is to be uniformly distributed across the grid
we must have 1/hoc| /""" in those regions where | /| is large.

4. METHOD OF SOLUTION AND APPLICATIONS

The crucial test of our algorithm is the solution of the hydrodynamic equations
(ideal, inviscid) coupled with the grid equation. We use the standard notation of
gasdynamics; thus denoting the gas density p, velocity u, gas pressure P, internal
gas energy density E, we get

~

p

LV (pu) =0, (16)
dpu
—at—+V'(puu)+VP=0, (17)
OE
%7+V-(Eu)+PV-u=o. (18)
¢

The internal gas energy density E is related to the gas pressure through an ideal
equation of state

P=(y-1)E, (19)

where v stands for the adiabatic gas index.

The basic difference is that the structures which should be resolved are not given
explicitly through analytic functions; instead they are determined implicitly by the
solution of the whole system of equations. The hydrodynamical equations are dis-
cretized according to the rules of Winkler, Norman, and Mihalas [18], but we use
only a simplified first order version of their difference scheme. For this reason we
only resolve gradients in the solution. The discretized system leads to a nonlinear
system of algebraic equations which is augumented by the grid equation (11). The
coupled system of hydrodynamic and grid equations is solved using a straight
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forward Newton-Raphson method. We get basically a blocked pentadiagonal
matrix of derivatives which has to be inverted (we refer to standard textbooks or,
€.g., to [18] for more details) and usually we need 5 Newton—Raphson iterations to
reach the desired relative acuracy of less than 107,

We solve two different problems to demonstrate the applicability of this gridpoint
distribution technique; in linear geometry we discuss the well-known shock tube
problem (see, e.g., Sod [13]) and in spherical geometry we calculate the time
evolution of a blast wave with parameters appropriate to a supernova explosion.

a. Shock Tube Problem

The shock tube problem starts with a hot, high density, gas (pressure 1.0, density
1.0) in the region 0 <x<0.5 and a cold, low density, gas (pressure 0.1, density
0.125) in the region 0.5 <x < 1. The gas is initially at rest and satisfies an ideal
equation of state with y=1. At r=0 the diaphragm separating the two regions is
removed causing a shock wave to propagate into the low density medium and a
rarefaction wave into the high density medium. These two flow regions are

45

36

NUMBER

0.032

0.024

TIME

0.008

0.008

.0

Fi6. 5. Gridpoint motion during the creation of the initial grid for the shocktube problem. (a) As a
function of time-step number. (b) As a function of “time.” The grid relaxes on a time scale = 10"? and
is completely relaxed after 4z.
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separated by a contact discontinuity. At x =0 and x =1 we impose reflecting boun-
dary conditions. Analytic solutions have been obtained for the early phases of the
evolution by Riemann [12].

This problem exhibits several interactions of nonlinear waves; shock reflection,
shock merging, the interaction of a shock with a contact discontinuity and the
reflection of a rarefaction wave (for more details see, e.g., Courant and Friedrichs
[4]). These can easily be followed on a space-time diagram of the gridpoint motion
(see Winkler et al. [17] for a more detailed description).

To set up the initial grid distribution we describe here a very simple procedure
which takes advantage of the built-in time dependence of the grid equation. Instead
of solving the full system of hydrodynamics and grid equation we set p,= p(x;),
u;=u(x,), and E,= E(x,) with the functions p(x), u(x), E(x) known from the initial
conditions. Keeping these functions fixed we can choose the time parameter 1 #0
and start with an initially equidistant grid distribution. We iterate the system until
the grid is stationary and this state is usually reached after 50 time steps (Fig. 5). In
keeping with the philosophy of finite difference methods using an artificial viscosity
we slightly smooth the initial conditions so that discontinuities are approximated
by hyperbolic tangents with typical scales of 10 * This procedure enables us to
create an initial grid distribution from any given initial conditions for the physical
variables. To clarify we want to state again that the time parameter 7 for creating
the initial grid is not related to the actual calculation including the physical
equations.

Then we start the calculation with the initial grid and the full set of
hydrodynamical equations. The parameters in Eq. (3) were X=1, F,=1, j=1, 2,3,
with f, the density, f> the velocity, and f; the specific internal energy of the gas.
Clearly by choosing other scales the performance of the grid equation for specific
problems can be optimised, e.g., if good resolution of the velocity structure is
important F, should be decreased. We use 100 gridpoints, and set the “rigidity”
parameter o =2 and the time constant =10 "".

Figures 6-9 depict the variables at 1 =001, r=0.23, r=0.32, 1 =1.0. The break-
up of the initial state into several nonlinear waves and their various interactions can
be seen. The rounded edges of the rarefaction wave are probably a consequence of
the low-order discfetization in space and time. The discontinuities are represented
in a quite satisfactory way. A useful side effect of these test calculations is that we
can put “error-bars” on the numerical solutions: the calculated solution agrees with
the analytic solution to better than 1%. The reflection of the flow on the walls
generates one additional numerical error. This so-called wall heating causes an
unphysical entropy spike, which affects only some cells located at the wall. The
expanding grid tends to correct this by mixing material with the correct entropy to
the tiny fraction of overheated gas although in calculations with a large number of
points and a small scale for the internal energy the feature remains (cf. Winkler
etal [17,18]).

Figure 10 shows the space-time evolution of the gridpoints. We plot every second
point. The point concentrations associated with the shock and the contact discon-
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TIME

Fic. 10. The gridpoint motion during the shocktube calculation. Every second gridpoint is plotted.
The dark lines correspond to the motion of the shock and the contact discontinuity, respectively.
At 1x0.28 the shock is reflected at the right wall and at ¢ 041 the shock interacts with the contact
discontinuity.

tinuity are obvious while the expansion wave, though not so pronounced, can also
be seen. At t=x0.28 the shock reflects from the wall (x=1). The gridpoints are
pulled out to resolve the remaining structures. This motion is controlled by the time
scale parameter t=10 *. After the shock reflection the gridpoints are pulled in
again causing a horizontal black line on the plot. The same holds for the interaction
of the contact discontinuity with the shock (#x0.41) because now only one locally
refined grid region is needed to resolve the two steep gradients. Since we have not
encountered any problems during these phases, we do not incorporate an asym-
metric time-filtering as advocated by Winkler eral. [18]. The whole evolution
requires about 100 time steps. On the comoving grid the solution looks almost
stationary allowing the implicit method to take rather large time steps; typical
Courant-numbers are in the range 107 *.

b. Spherical Blast Wave

To demonstrate the broad applicability of the adaptive grid technique we now
solve a problem in spherical geometry where we have to cover many orders of
magnitude variation in both dependent and independent variables; a “standard”
supernova exploding in the hot phase of the interstellar medium [10]. For the
progenitor star we use a very simple model of a red giant star; the density is taken
to be constant at 10" gcm * out to 5x 10" ¢cm and then to decrease exponen-
tially with a length scale of 10'*cm until the density of the external medium is
reached. We assume initial pressure equilibrium and then deposit Egy =10 erg
uniformly as thermal energy within a radius of 10'"° cm. The exact details of this
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model are probably not critical for the subsequent evolution, the important
parameters are the explosion energy Egy and the ejecta mass of five solar masses.
The external medium is a tenuous low density gas at rest with density p.,, =
S-10 Y gcm ? at a temperature T.,, =5-10° °K.

We use the hydrodynamic equations written in conservative form for spherical
geometry. The discretization is unchanged and corresponds basically to the linear
case, but we use a tensor formulation of the artificial viscosity [14] and take as a
typical length scale for broadening the shock front 10 * of the local shock radius.
We also include a small amount of heat conduction (6 =10""cm?sec™') to
restrict the thickness of the propagating contact discontinuity (see again Winkler
et al. [18] for more details on the actual discretization).

The main difference in the grid equation is the use of logarithmic scaling, ie.,
X=x and F,=f,. These scales can be discretized in several ways; for this rather
extreme problem we found it necessary to discretize F, as

1 _1< L 1)
Fii 2\fiien fi)

The use of a harmonic mean instead of the rather more natural arithmetic mean
prevents the grid from “tearing” (W. M. Tscharnuter, Personal communication). If
the arithmetic mean were used the dimensionless gradient, (f,,, , —f,)/(f.o 1 +/.1),

7
would be bounded (for positive /') between plus and minus one, thus if the number

of points in a near-discontinuity becomes small this form “saturates” and is no
longer a good measure of the desired resolution. The grid then tends to concentrate
all the variation in one cell. The harmonic mean essentially avoids this problem by
making the gradient dimensionless with respect to the smaller of the left and right
values. The arithmetic mean can be used for X, ie.,

Xi=3x,4+x,,4).

We use j=1, 2 with f| the density and f, the specific internal energy. The time con-
stant is set to zero, i.e., =0 so that the gridpoints react immediatly to changes in
the physical variables. The spatial smoothing corresponds to % =2 and we use
400 gridpoints.

The carly phases of the supernova evolution are shown in Fig. 11. The stored

. ctvranma chaanl: ta wmin theansch tha avtawdad ceealaws AF tha
1

r=10" 10% 10° sec. At = 10°sec the shock accelerates again down the large den-
sity gradient which represents the stellar atmosphere. The fourth curve r=2-10° sec
shows the shock in the atmosphere. The shock speed approaches the speed of light
and we cannot draw detailed conclusions during this phase since we use only the
Newtonian hmit of the hydrodynamical equations. In any case, we do not try to
simulate a “realistic” supernova explosion, but we consider this to be a very
challenging test problem for our grid equation. From r=3x10%sec up to
1=5x 10" sec the further evolution is characterized by a free expansion with the
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following typical structure: the ejecta are separated from the external medium by a
contact discontinuity bounded by two shocks. The interior cools down adiabatically
and the kinetic energy of the explosion is transformed to thermal energy in the two
shocks. The reverse shock is advected with the fluid, but moves backward relative
to the contact discontinuity. The strong forward shock compresses the interstellar
material. These can be seen in Fig. 11 and in more detail in Fig. 12 where we have
plotted every gridpoint.

At about 5 x 10" sec the swept-up mass becomes comparable to the ejecta mass
and the reverse shock runs inwards and heats the interior. This phase is shown in
Fig. 13. The extremely low interior densities lead to very high shock velocities {1000
times the velocity of light!). At a radius of 10'! cm we impose a reflecting boundary
condition. When the shock reaches this inner radius a disturbance propagates back
up the density gradient, interacts with the contact discontinuity and a second

a=2‘t=0 ‘
I L%Q\w\&%]@
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/ l
3.0 !
" I
é 8.0 ?
e i
g o] |
6.0 \ 'A
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FiG. 14. The gridpoint motion during the supernova calculation. Every 8th gridpoint is plotted. The
initial point concentrations at R=10" cm resulting from the strong gradient in the thermal energy
deposition and at R = 5x 10" cm resulting from the density gradient in the stellar atmosphere are clearly
seen. At 1=2x 107 sec the shock runs through the stellar atmosphere and speeds up to a high velocity.
At r=9x 10" sec the reverse shock starts travelling inwards and at £ =2.7 x 10'2 sec a second somewhat
weaker reverse shock runs into the interior. These two events are indicated by the horizontal motion of
the gridpoints. The calculation was stopped when the Mach-number of the outermost shock decreased to
unity at 1= 3.4x 10" sec.
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reverse shock forms. After this the interior is almost in pressure equilibrium
although small disturbances remain. The internal pressure is close to the external
pressure so that no Sedov-phase occurs.

Figure 14 shows the complete gridpoint evolution for this calculation. The entire
calculation ran without manual intervention and without carefully chosen
parameters. It required about 4000 time steps and took 40 min on a CRAY-1 com-
puter. The smallest timestep was 10 ‘2 sec and the largest 10'! sec. The maximum
point concentration was 10°.

CONCLUDING REMARKS

The two solutions exhibited in the last section demonstrate that the use of Simple
Adaptive Grid Equations (our favourite acronym is SAGE) constitutes a valuable
technique for the numerical solution of evolution equations in one spatial dimen-
sion. An extension of the method to multidimensional problems would appear to be
possible by defining R and » as tensors. However this must await the further
development of multidimensional implicit finite difference methods and it may be
that grid refinement methods [1] are better in more than one dimension.
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